Tag Archives: distributed computing

Folding@Home: Nvidia GTX 1080 Review Part 3: Memory Speed

In the last article, I investigated how the power limit setting on an Nvidia Geforce GTX 1080 graphics card could affect the card’s performance and efficiency for doing charitable disease research in the Folding@Home distributed computing project. The conclusion was that a power limit of 60% offers only a slight reduction in raw performance (Points Per Day), but a large boost in energy efficiency (PPD/Watt). Two articles ago, I looked at the effect of GPU core clock. In this article, I’m experimenting with a different variable. Namely, the memory clock rate.

The effect of memory clock rate on video games is well defined. Gamers looking for the highest frame rates typically overclock both their graphics GPU and Memory speeds, and see benefits from both. For computation projects like Stanford University’s Folding@Home, the results aren’t as clear. I’ve seen arguments made both ways in the hardware forums. The intent of this article is to simply add another data point, albeit with a bit more scientific rigor.

The Test

To conduct this experiment, I ran the Folding@Home V7 GPU client for a minimum of 3 days continuously on my Windows 10 test computer. Folding@Home points per day (PPD) numbers were taken from Stanford’s Servers via the helpful team at https://folding.extremeoverclocking.com.  I measured total system power consumption at the wall with my P3 Kill A Watt meter. I used the meter’s KWH function to capture the total energy consumed, and divided out by the time the computer was on in order to get an average wattage value (thus eliminating a lot of variability). The test computer specs are as follows:

Test Setup Specs

  • Case: Raidmax Sagitta
  • CPU: AMD FX-8320e
  • Mainboard : Gigabyte GA-880GMA-USB3
  • GPU: Asus GeForce 1080 Turbo
  • Ram: 16 GB DDR3L (low voltage)
  • Power Supply: Seasonic X-650 80+ Gold
  • Drives: 1x SSD, 2 x 7200 RPM HDDs, Blu-Ray Burner
  • Fans: 1x CPU, 2 x 120 mm intake, 1 x 120 mm exhaust, 1 x 80 mm exhaust
  • OS: Win10 64 bit
  • Video Card Driver Version: 372.90

I ran this test with the memory clock rate at the stock clock for the P2 power state (4500 MHz), along with the gaming clock rate of 5000 MHz and a reduced clock rate of 4000 MHz. This gives me three data points of comparison. I left the GPU core clock at +175 MHz (the optimum setting from my first article on the 1080 GTX) and the power limit at 100%, to ensure I had headroom to move the memory clock without affecting the core clock. I verified I wasn’t hitting the power limit in MSI Afterburner.

*Update. Some people may ask why I didn’t go beyond the standard P0 gaming memory clock rate of 5000 MHz (same thing as 10,000 MHz double data rate, which is the card’s advertised memory clock). Basically, I didn’t want to get into the territory where the GDDR5’s error checking comes into play. If you push the memory too hard, there can be errors in the computation but work units can still complete (unlike a GPU core overclock, where work units will fail due to errors). The reason is the built-in error checking on the card memory, which corrects errors as they come up but results in reduced performance. By staying away from 5000+ MHz territory on the memory, I can ensure the relationship between performance and memory clock rate is not affected by memory error correction.

1080 Memory Boost Example

Memory Overclocking Performed in MSI Afterburner

Tabular Results

I put together a table of results in order to show how the averaging was done, and the # of work units backing up my +500 MHz and -500 MHz data points. Having a bunch of work units is key, because there is significant variability in PPD and power consumption numbers between work units. Note that the performance and efficiency numbers for the baseline memory speed (+0 MHz, aka 4500 MHz) come from my extended testing baseline for the 1080 and have even more sample points.

Geforce 1080 PPD Production - Ram Study

Nvidia GTX 1080 Folding@Home Production History: Data shows increased performance with a higher memory speed

Graphic Results

The following graphs show the PPD, Power Consumption, and Efficiency curves as a function of graphics card memory speed. Since I had three points of data, I was able to do a simple three-point-curve linear trendline fit. The R-squared value of the trendline shows how well the data points represent a linear relationship (higher is better, with 1 being ideal). Note that for the power consumption, the card seems to have used more power with a lower memory clock rate than the baseline memory clock. I am not sure why this is…however, the difference is so small that it is likely due to work unit variability or background tasks running on the computer. One could even argue that all of the power consumption results are suspect, since the changes are so small (on the order of 5-10 watts between data points).

Geforce 1080 Performance vs Ram Speed

Geforce 1080 Power vs Ram Speed

Geforce 1080 Efficiency vs Ram Speed

Conclusion

Increasing the memory speed of the Nvidia Geforce GTX 1080 results in a modest increase in PPD and efficiency, and arguably a slight increase in power consumption. The difference between the fastest (+500 MHz) and slowest (-500 MHz) data points I tested are:

PPD: +81K PPD (11.5%)

Power: +9.36 Watts (3.8%)

Efficiency: +212.8 PPD/Watt (7.4%)

Keep in mind that these are for a massive difference in ram speed (5000 MHz vs 4000 MHz).

Another way to look at these results is that underclocking the graphics card ram in hopes of improving efficiency doesn’t work (you’ll actually lose efficiency). I expect this trend will hold true for the rest of the Nvidia Pascal series of cards (GTX 10xx), although so far my testing of this has been limited to this one card, so your mileage may vary. Please post any insights if you have them.

Advertisements

NVIDIA GEFORCE GTX 1080 Folding@Home Review (Part 1)

Intro

It’s hard to believe that the Nvidia GTX 1080 is almost three years old now, and I’m just getting around to writing a Folding@Home review of it. In the realm of graphics cards, this thing is legendary, and only recently displaced from the enthusiast podium by Nvidia’s new RTX series of cards. The 1080 was Nvidia’s top of the line gaming graphics card (next to the Ti edition of course), and has been very popular for both GPU coin mining and cancer-curing (or at least disease research for Stanford University’s charitable distributed computing project: Folding@Home). If you’ve been following along, you know it’s that second thing that I’m interested in. The point of this review is to see just how well the GTX 1080 folds…and by well, I mean not just raw performance, but also energy efficiency.


Quick Stats Comparison

I threw together a quick table to give you an idea of where the GTX 1080 stacks up (I left the newer RTX cards and the older GTX 9-series cards off of here because I’m lazy…

Nvidia Pascal Cards

Nvidia Pascal Family GPU Comparison

As you can see, the GTX 1080 is pretty fast, eclipsed only by the GTX 1080 Ti (which also has a higher Thermal Design Power, suggesting more electricity usage). From my previous articles, we’ve seen that the more powerful cards tend to do work more efficiency, especially if they are in the same TDP bracket. So, the 1080 should be a better folder (both in PPD and PPD/Watt efficiency) than the 1070 Ti I tested last time.

Test Card: ASUS GeForce GTX 1080 Turbo

As with the 1070 Ti, I picked up a pretty boring flavor of a 1080 in the form of an Asus turbo card. These cards lack back plates (which help with circuit board rigidity and heat dissipation) and use cheap blower coolers, which suck in air from a single centrifugal fan on the underside and blow it out the back of the case (keeping the hot air from building up in the case). These are loud, and tend to run hotter than open-fan coolers, so overclocking and boost clocks are limited compared to aftermarket designs. However, like Nvidia’s own Founder’s Edition reference cards, this reference design provides a good baseline for a 1080’s minimum performance.

ASUS GeForce GTX 1080 Turbo

ASUS GeForce GTX 1080 Turbo

The new 1080 looks strikingly similar to the 1070 Ti…Asus is obviously reusing the exact same cooler since both cards have a 180 Watt TDP.

Asus GTX 1080 and 1070 Ti

Asus GTX 1080 and 1070 Ti (which one is which?)

Test Environment

Like most of my previous graphics card testing, I put this into my AMD FX-Based Test System. If you are interested in how this test machine does with CPU folding, you can read about it here. Testing was done using Stanford’s Folding@Home V7 Client (version 7.5.1) in Windows 10. Points Per Day (PPD) production was collected from Stanford’s servers. Power measurements were done with a P3 Kill A Watt Meter (taken at the wall, for a total-system power profile).

Test Setup Specs

  • Case: Raidmax Sagitta
  • CPU: AMD FX-8320e
  • Mainboard : Gigabyte GA-880GMA-USB3
  • GPU: Asus GeForce 1080 Turbo
  • Ram: 16 GB DDR3L (low voltage)
  • Power Supply: Seasonic X-650 80+ Gold
  • Drives: 1x SSD, 2 x 7200 RPM HDDs, Blu-Ray Burner
  • Fans: 1x CPU, 2 x 120 mm intake, 1 x 120 mm exhaust, 1 x 80 mm exhaust
  • OS: Win10 64 bit
  • Video Card Driver Version: 372.90

Video Card Configuration – Optimize for Performance

In my previous articles, I’ve shown how Nvidia GPUs don’t always automatically boost their clock rates when running Folding@home (as opposed to video games or benchmarks). The same is true of the GTX 1080. It sometimes needs a little encouragement in order to fold at the maximum performance. I overclocked the core by 175 MHz and increased the power limit* by 20% in MSI afterburner using similar settings to the GTX 1070. These values were shown to be stable after 2+ weeks of testing with no dropped work units.

*I also experimented with the power limit at 100% and I saw no change in card power consumption. This makes sense…folding is not using 100% of the GPU. Inspection of the MSI afterburner plots shows that while folding, the card does not hit the power limit at either 100% or 120%. I will have to reduce the power limit to get the card to throttle back (this will happen in part 2 of this article).

As with previous cards, I did not push the memory into its performance zone, but left it at the default P2 (low-power) state clock rate. The general consensus is that memory clock does not significantly affect folding@home, and it is better to leave the power headroom for the core clock, which does improve performance. As an interesting side-note, the memory clock on this thing jumps up to 5000 Mhz (effective) in benchmarks. For example, see the card’s auto-boost settings when running Heaven:

1080 Benchmark Stats

Nvidia GeForce GTX 1080 – Boost Clocks (auto) in Heaven Benchmark

Testing Overview

For most of my tests, I just let the computer run folding@home 24/7 for a couple of days and then average the points per day (PPD) results from Stanford’s stats server. Since the GTX 1080 is such a popular card, I decided to let it run a little longer (a few weeks) to get a really good sampling of results, since PPD can vary a lot from work unit to work unit. Before we get into the duration results, let’s do a quick overview of what the Folding@home environment looks like for a typical work unit.

The following is an example screen shot of the display from the client, showing an instantaneous PPD of about 770K, which is very impressive. Here, it is folding on a core 21 work unit (Project 14124).

F@H Client 1080

Folding@Home V7 Client – GeForce GTX 1080

MSI Afterburner is a handy way to monitor GPU stats. As you can see, the GPU usage is hovering in the low 80% region (this is typical for GPU folding in Windows. Linux can use a bit more of the GPU for a few percentage points more PPD). This Asus card, with its reference blower cooler, is running a bit warm (just shy of 70 degrees C), but that’s well within spec. I had the power limit at 120%, but the card is nowhere near hitting that…the power limit seems to just peak above 80% here and there.

GTX 1080 MSI Afterburner

GTX 1080 stats while folding.

Measuring card power consumption with the driver shows that it’s using about 150 watts, which seems about right when compared to the GPU usage and power % graphs. 100% GPU usage would be ideal (and would result in a power consumption of about 180 watts, which is the 1080’s TDP).

In terms of card-level efficiency, this is 770,000 PPD / 150 Watts = 5133 PPD/Watt.

Power Draw (at the card)

Nvidia Geforce GTX 1080 – Instantaneous Power Draw @ the Card

Duration Testing

I ran Folding@Home for quite a while on the 1080. As you can see from this plot (courtesy of https://folding.extremeoverclocking.com/), the 1080 is mildly beating the 1070 Ti. It should be noted that the stats for the 1070 Ti are a bit low in the left-hand side of the plot, because folding was interrupted a few times for various reasons (gaming). The 1080 results were uninterrupted.

1080 Production History

Geforce GTX 1080 Production History

Another thing I noticed was the amount of variation in the results. Normal work unit variation (at least for less powerful cards) is around 10-20 percent. For the GTX 1080, I saw swings of 200K PPD, which is closer to 30%. Check out that one point at 875K PPD!

Average PPD: 730K PPD

I averaged the PPD over two weeks on the GTX 1080 and got 730K PPD. Previous testing on the GTX 1070 Ti (based on continual testing without interruptions) showed an average PPD of 700K. Here is the plot from that article, reproduced for convenience.

Nvidia GTX 1070 Ti Time History

Nvidia GTX 1070 Ti Folding@Home Production Time History

I had expected my GTX 1080 to do a bit better than that. However, it only has about 5% more CUDA cores than the GTX 1070 Ti (2560 vs 2438). The GTX 1080’s faster memory also isn’t an advantage in Folding@Home. So, a 30K PPD improvement for the 1080, which corresponds to about a 4.3% faster, makes sense.

System Average Power Consumption: 240 Watts @ the Wall

I spot checked the power meter (P3 Kill A Watt) many times over the course of folding. Although it varies with work unit, it seemed to most commonly use around 230 watts. Peek observed wattage was 257, and minimum was around 220. This was more variation than I typically see, but I think it corresponds with the variation in PPD I saw in the performance graph. It was very tempting to just say that 230 watts was the number, but I wasn’t confident that this was accurate. There was just too much variation.

In order to get a better number, I reset the Kill-A-Watt meter (I hadn’t reset it in ages) and let it log the computer’s usage over the weekend. The meter keeps track of the total kilowatt-hours (KWH) of energy consumed, as well as the time period (in hours) of the reading. By dividing the energy by time, we get power. Instead of an instantaneous power (the eyeball method), this is an average power over the weekend, and is thus a compatible number with the average PPD.

The end result of this was 17.39 KWH consumed over 72.5 hours. Thus, the average power consumption of the computer is:

17.39/72.5 (KWH/H) * 1000 (Watts/KW) = about 240 Watts (I round a bit for convenience in reporting, but the Excel sheet that backs up all my plots is exact)

This is a bit more power consumed than the GTX 1070 Ti results, which used an average of 225 watts (admittedly computed by the eyeball method over many days, but there was much less variation so I think it is valid). This increased power consumption of the GTX 1080 vs. the 1070 Ti is also consistent with what people have seen in games. This Legit Reviews article shows an EVGA 1080 using about 30 watts more power than an EVGA 1070 Ti during gaming benchmarks. The power consumption figure is reproduced below:

LegitReviews_power-consumption

Modern Graphics Card Power Consumption. Source: Legit Reviews

This is a very interesting result. Even though the 1080 and the 1070 Ti have the same 180 Watt TDP, the 1080 draws more power, both in folding@home and in gaming.

System Computational Efficiency: 3044 PPD/Watt

For my Asus GeForce GTX 1080, the folding@home efficiency is:

730,000 PPD / 240 Watts = 3044 PPD/Watt.

This is an excellent score. Surprisingly, it is slightly less than my Asus 1070 Ti, which I found to have an efficiency of 3126 PPD/Watt. In practice these are so close that it just could be attributed to work unit variation. The GeForce 1080 and 1070 Ti are both extremely efficient cards, and are good choices for folding@home.

Comparison plots here:

GeForce 1080 PPD Comparison

GeForce GTX 1080 Folding@Home PPD Comparison

GeForce 1080 Efficiency Comparison

GeForce GTX 1080 Folding@Home Efficiency Comparison

Final Thoughts

The GTX 1080 is a great card. With that said, I’m a bit annoyed that my GTX 1080 didn’t hit 800K PPD like some folks in the forums say theirs do (I bet a lot of those people getting 800K PPD use Linux, as it is a bit better than Windows for folding). Still, this is a good result.

Similarly, I’m annoyed that the GTX 1080 didn’t thoroughly beat my 1070 Ti in terms of efficiency. The results are so close though that it’s effectively the same. This is part one of a multi-part review, where I tuned the card for performance. In the next article, I plan to go after finding a better efficiency point for running this card by experimenting with reducing the power limit. Right now I’m thinking of running the card at 80% power limit for a week, and then at 60% for another week, and reporting the results. So, stay tuned!

Is Folding@Home a Waste of Electricity?

Folding@home has brought together thousands of people (81 thousand active folders as of the time of this writing, as evidenced from Stanford’s One in a Million contributor drive.) This is awesome…tens of thousands of people teaming up to help researchers unravel the mysteries of terrible diseases.

But, there is a cost. If you are reading this blog, then you know the cost of scientific computing projects such as Folding@Home is environmental. In trying to save ourselves from the likes of cancer and Alzheimer’s disease, we are running a piece of software that causes our computers to use more electricity. In the case of dedicated folding@home computers, this can be hundreds of watts of power consumed 24/7. It adds up to a lot of consumed power, that in the end exits your computer as heat (potentially driving up your air conditioning costs as well).

Folding on Graphics Card Thermal

FLIR Thermal Cam – Folding@Home on Graphics Card

If Stanford reaches their goal of 1 million active folders, then we have an order of magnitude more power consumption on our hands. Let’s do some quick math, assuming each folder contributes 200 watts continuous (low compared to the power draw of most dedicated Folding@home machines). In this case, we have 200 watts/computer * 24 hours/day * 365 days/year * 1,000,000 computers *1 kilowatt-hour/1000 watt-hours = 1,752,000,000 kilowatt-hours of power consumed in a year, in the name of Science!

That’s almost two billion kilowatt-hours, people.  It’s 1.75 terawatt-hours (TWh)! Using the EPA’s free converter can put that into perspective. Basically, this is like driving 279 thousand extra cars for a year, or burning 1.5 billion pounds of coal.  Yikes!

https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

F@H Energy Equivalence

Potential Folding@Home Environmental Impact

Is all this disease research really harming the planet? If it is, is it worth it? I don’t know. It depends on the outcome of the research, the potential benefit to humans, and the detriment to humans, animals, and the environment caused by that research. This opens up all sorts of what-if scenarios.

For example: what if Folding@Home does help find a future cure for many diseases, which results in extended life-spans. Then, the earth gets even more overpopulated than it is already. Wouldn’t the added environmental stresses negatively impact people’s health? Conversely, what if Folding@Home research results in a cure for a disease that allows a little girl or boy to grow to adulthood and become the inventor of some game-changing green technology?

It’s just not that easy to quantify.

Then, there is the topic of Folding@home vs. other distributed computing projects. Digital currency, for example. Bitcoin miners (and all the spinoffs) suck up a ton of power. Current estimates put Bitcoin alone at over 40 TWH a year.

Source: https://www.theguardian.com/technology/2018/jan/17/bitcoin-electricity-usage-huge-climate-cryptocurrency

That’s more power than some countries use, and twenty times more than my admittedly crude future Folding@home estimate. When you consider that the cryptocurrency product has only limited uses (many of which are on the darkweb for shady purposes), it perhaps helps cast Folding@home in a better light.

There is always room for improvement thought. That is the point of this entire blog. If we crazies are committed to turning our hard-earned dollars into “points”, we might as well do it in the most efficient way possible. And, while we’re at it, we should consider the environmental cost of our hobby and think of ways to offset it (that goes for the Bitcoin folks too).

I once ran across a rant on another online blog about how Folding@home is killing the planet. This was years ago, before the Rise of the Crypto. I wish I could find that now, but it seems to have been lost in the mists of time, long since indexed, ousted, and forgotten by the Google Search Crawler. In it, the author bemoaned over how F@H was murdering mother earth in the name of science. I recall thinking to myself, “hey, they’ve got a point”. And then I realized that I had already done a bunch of things to help combat the rising electric bill, and I bet most distributed computing participants have done some of these things too.

These things are covered elsewhere in this blog, and range from optimizing the computer doing the work to going after other non-folding@home related items to help offset the electrical and environmental cost. I started by switching to LED light-bulbs, then went to using space heaters instead of whole house heating methods in the winter. As I upgraded my Folding@home computer, I made it more energy efficient not just for F@H but for all tasks executed on that machine.

In the last two years, my wife and I bought a house, which gave us a whole other level of control over the situation. We had one of those state-subsidized energy audits done. They put in some insulation and air-sealed our attic, thus reducing our yearly heating costs. Eventually, we even decided to put solar panels on the roof and get an electric car (these last two weren’t because I felt guilty about running F@H, but because my wife and I are just into green technologies). We even use our Folding@home computer as a space heater in the winter, thus offsetting home heating oil use and negating any any environmental arguments against F@H in the winter months.

In conclusion, there is no doubt that distributed projects have an environmental cost. However, to claim that they are a waste of electricity or that they are killing the planet might be taking it too far. One has to ask if the cause is worth the environmental impact, and then figure out ways to lessen that impact (or in some cases get motivated to offset it completely. Solar powered folding farm, anyone?)

Solar Panel in Basement

LG 320 Solar Panel in my basement, awaiting roof install.