Tag Archives: Folding@home

Is Folding@Home a Waste of Electricity?

Folding@home has brought together thousands of people (81 thousand active folders as of the time of this writing, as evidenced from Stanford’s One in a Million contributor drive.) This is awesome…tens of thousands of people teaming up to help researchers unravel the mysteries of terrible diseases.

But, there is a cost. If you are reading this blog, then you know the cost of scientific computing projects such as Folding@Home is environmental. In trying to save ourselves from the likes of cancer and Alzheimer’s disease, we are running a piece of software that causes our computers to use more electricity. In the case of dedicated folding@home computers, this can be hundreds of watts of power consumed 24/7. It adds up to a lot of consumed power, that in the end exits your computer as heat (potentially driving up your air conditioning costs as well).

Folding on Graphics Card Thermal

FLIR Thermal Cam – Folding@Home on Graphics Card

If Stanford reaches their goal of 1 million active folders, then we have an order of magnitude more power consumption on our hands. Let’s do some quick math, assuming each folder contributes 200 watts continuous (low compared to the power draw of most dedicated Folding@home machines). In this case, we have 200 watts/computer * 24 hours/day * 365 days/year * 1,000,000 computers *1 kilowatt-hour/1000 watt-hours = 1,752,000,000 kilowatt-hours of power consumed in a year, in the name of Science!

That’s almost two billion kilowatt-hours, people.  It’s 1.75 terawatt-hours (TWh)! Using the EPA’s free converter can put that into perspective. Basically, this is like driving 279 thousand extra cars for a year, or burning 1.5 billion pounds of coal.  Yikes!

https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

F@H Energy Equivalence

Potential Folding@Home Environmental Impact

Is all this disease research really harming the planet? If it is, is it worth it? I don’t know. It depends on the outcome of the research, the potential benefit to humans, and the detriment to humans, animals, and the environment caused by that research. This opens up all sorts of what-if scenarios.

For example: what if Folding@Home does help find a future cure for many diseases, which results in extended life-spans. Then, the earth gets even more overpopulated than it is already. Wouldn’t the added environmental stresses negatively impact people’s health? Conversely, what if Folding@Home research results in a cure for a disease that allows a little girl or boy to grow to adulthood and become the inventor of some game-changing green technology?

It’s just not that easy to quantify.

Then, there is the topic of Folding@home vs. other distributed computing projects. Digital currency, for example. Bitcoin miners (and all the spinoffs) suck up a ton of power. Current estimates put Bitcoin alone at over 40 TWH a year.

Source: https://www.theguardian.com/technology/2018/jan/17/bitcoin-electricity-usage-huge-climate-cryptocurrency

That’s more power than some countries use, and twenty times more than my admittedly crude future Folding@home estimate. When you consider that the cryptocurrency product has only limited uses (many of which are on the darkweb for shady purposes), it perhaps helps cast Folding@home in a better light.

There is always room for improvement thought. That is the point of this entire blog. If we crazies are committed to turning our hard-earned dollars into “points”, we might as well do it in the most efficient way possible. And, while we’re at it, we should consider the environmental cost of our hobby and think of ways to offset it (that goes for the Bitcoin folks too).

I once ran across a rant on another online blog about how Folding@home is killing the planet. This was years ago, before the Rise of the Crypto. I wish I could find that now, but it seems to have been lost in the mists of time, long since indexed, ousted, and forgotten by the Google Search Crawler. In it, the author bemoaned over how F@H was murdering mother earth in the name of science. I recall thinking to myself, “hey, they’ve got a point”. And then I realized that I had already done a bunch of things to help combat the rising electric bill, and I bet most distributed computing participants have done some of these things too.

These things are covered elsewhere in this blog, and range from optimizing the computer doing the work to going after other non-folding@home related items to help offset the electrical and environmental cost. I started by switching to LED light-bulbs, then went to using space heaters instead of whole house heating methods in the winter. As I upgraded my Folding@home computer, I made it more energy efficient not just for F@H but for all tasks executed on that machine.

In the last two years, my wife and I bought a house, which gave us a whole other level of control over the situation. We had one of those state-subsidized energy audits done. They put in some insulation and air-sealed our attic, thus reducing our yearly heating costs. Eventually, we even decided to put solar panels on the roof and get an electric car (these last two weren’t because I felt guilty about running F@H, but because my wife and I are just into green technologies). We even use our Folding@home computer as a space heater in the winter, thus offsetting home heating oil use and negating any any environmental arguments against F@H in the winter months.

In conclusion, there is no doubt that distributed projects have an environmental cost. However, to claim that they are a waste of electricity or that they are killing the planet might be taking it too far. One has to ask if the cause is worth the environmental impact, and then figure out ways to lessen that impact (or in some cases get motivated to offset it completely. Solar powered folding farm, anyone?)

Solar Panel in Basement

LG 320 Solar Panel in my basement, awaiting roof install.

Advertisement

Folding on the NVidia GTX 1060

Overview

Folding@home is Stanford University’s charitable distributed computing project. It’s charitable because you can donate electricity, as converted into work through your home computer, to fight cancer, Alzheimer, and a host of other diseases.  It’s distributed, because anyone can run it with almost any desktop PC hardware.  But, not all hardware configurations are created equally.  If you’ve been following along, you know the point of this blog is to do the most work for as little power consumption as possible.  After all, electricity isn’t free, and killing the planet to cure cancer isn’t a very good trade-off.

Today we’re testing out Folding@home on EVGA’s single-fan version of the NVIDIA GTX 1060 graphics card.  This is an impressive little card in that it offers a lot of gaming performance in a small package.  This is a very popular graphics card for gamers who don’t want to spend $400+ on GTX 1070s and 1080s.  But, how well does it fold?

Card Specifications

Manufacturer:  EVGA
Model #:  06G-P4-6163
Model Name: EVGA GeForce GTX 1060 SC GAMING (Single Fan)
Max TDP: 120 Watts
Power:  1 x PCI Express 6-pin
GPU: 1280 CUDA Cores @ 1607 MHz (Boost Clock of 1835 MHz)
Memory: 6 GB GDDR5
Bus: PCI-Express X16 3.0
MSRP: $269

06G-P4-6163-KR_XL_4

EVGA Nvidia GeForce GTX 1060 (photo by EVGA)

Folding@Home Test Setup

For this test I used my normal desktop computer as the benchmark machine.  Testing was done using Stanford’s V7 client on Windows 7 64-bit running FAH Core 21 work units.  The video driver version used was 381.65.  All power consumption measurements were taken at the wall and are thus full system power consumption numbers.

If you’re interested in reading about the hardware configuration of my test rig, it is summarized in this post:

https://greenfoldingathome.com/2017/04/21/cpu-folding-revisited-amd-fx-8320e-8-core-cpu/

Information on my watt meter readings can be found here:

I Got a New Watt Meter!

FOLDING@HOME TEST RESULTS – 305K PPD AND 1650 PPD/WATT

The Nvidia GTX 1060 delivers the best Folding@Home performance and efficiency of all the hardware I’ve tested so far.  As seen in the screen shot below, the native F@H client has shown up to 330K PPD.  I ran the card for over a week and averaged the results as reported to Stanford to come up with the nominal 305K Points Per Day number.  I’m going to use 305 K PPD in the charts in order to be conservative.  The power draw at the wall was 185 watts, which is very reasonable, especially considering this graphics card is in an 8-core gaming rig with 16 GB of ram.  This results in a F@H efficiency of about 1650 PPD/Watt, which is very good.

Screen Shot from F@H V7 Client showing Estimated Points per Day:

1060 TI Client

Nvidia GTX 1060 Folding @ Home Results: Windows V7 Client

Here are the averaged results based on actual returned work units

(Graph courtesy of http://folding.extremeoverclocking.com/)

1060 GTX PPD History

NVidia 1060 GTX Folding PPD History

Note that in this plot, the reported results previous to the circled region are also from the 1060, but I didn’t have it running all the time.  The 305K PPD average is generated only from the work units returned within the time frame of the red circle (7/12 thru 7/21)

Production and Efficiency Plots

Nvidia 1060 PPD

NVidia GTX 1060 Folding@Home PPD Production Graph

Nvidia 1060 PPD per Watt

Nvidia GTX 1060 Folding@Home Efficiency Graph

Conclusion

For about $250 bucks (or $180 used if you get lucky on eBay), you can do some serious disease research by running Stanford University’s Folding@Home distributed computing project on the Nvidia GTX 1060 graphics card.  This card is a good middle ground in terms of price (it is the entry-level in NVidia’s current generation of GTX series of gaming cards).  Stepping up to a 1070 or 1080 will likely continue the trend of increased energy efficiency and performance, but these cards cost between $400 and $800.  The GTX 1060 reviewed here was still very impressive, and I’ll also point out that it runs my old video games at absolute max settings (Skyrim, Need for Speed Rivals).  Being a relatively small video card, it easily fits in a mid-tower ATX computer case, and only requires one supplemental PCI-Express power connector.  Doing over 300K PPD on only 185 watts, this Folding@home setup is both efficient and fast. For 2017, the NVidia 1060 is an excellent bang-for-the-buck Folding@home Graphics Card.

Request: Anyone want to loan me a 1070 or 1080 to test?  I’ll return it fully functional (I promise!)