Category Archives: GPUs

Folding on the NVidia GTX 1060

Overview

Folding@home is Stanford University’s charitable distributed computing project. It’s charitable because you can donate electricity, as converted into work through your home computer, to fight cancer, Alzheimer, and a host of other diseases.  It’s distributed, because anyone can run it with almost any desktop PC hardware.  But, not all hardware configurations are created equally.  If you’ve been following along, you know the point of this blog is to do the most work for as little power consumption as possible.  After all, electricity isn’t free, and killing the planet to cure cancer isn’t a very good trade-off.

Today we’re testing out Folding@home on EVGA’s single-fan version of the NVIDIA GTX 1060 graphics card.  This is an impressive little card in that it offers a lot of gaming performance in a small package.  This is a very popular graphics card for gamers who don’t want to spend $400+ on GTX 1070s and 1080s.  But, how well does it fold?

Card Specifications

Manufacturer:  EVGA
Model #:  06G-P4-6163
Model Name: EVGA GeForce GTX 1060 SC GAMING (Single Fan)
Max TDP: 120 Watts
Power:  1 x PCI Express 6-pin
GPU: 1280 CUDA Cores @ 1607 MHz (Boost Clock of 1835 MHz)
Memory: 6 GB GDDR5
Bus: PCI-Express X16 3.0
MSRP: $269

06G-P4-6163-KR_XL_4

EVGA Nvidia GeForce GTX 1060 (photo by EVGA)

Folding@Home Test Setup

For this test I used my normal desktop computer as the benchmark machine.  Testing was done using Stanford’s V7 client on Windows 7 64-bit running FAH Core 21 work units.  The video driver version used was 381.65.  All power consumption measurements were taken at the wall and are thus full system power consumption numbers.

If you’re interested in reading about the hardware configuration of my test rig, it is summarized in this post:

https://greenfoldingathome.com/2017/04/21/cpu-folding-revisited-amd-fx-8320e-8-core-cpu/

Information on my watt meter readings can be found here:

I Got a New Watt Meter!

FOLDING@HOME TEST RESULTS – 305K PPD AND 1650 PPD/WATT

The Nvidia GTX 1060 delivers the best Folding@Home performance and efficiency of all the hardware I’ve tested so far.  As seen in the screen shot below, the native F@H client has shown up to 330K PPD.  I ran the card for over a week and averaged the results as reported to Stanford to come up with the nominal 305K Points Per Day number.  I’m going to use 305 K PPD in the charts in order to be conservative.  The power draw at the wall was 185 watts, which is very reasonable, especially considering this graphics card is in an 8-core gaming rig with 16 GB of ram.  This results in a F@H efficiency of about 1650 PPD/Watt, which is very good.

Screen Shot from F@H V7 Client showing Estimated Points per Day:

1060 TI Client

Nvidia GTX 1060 Folding @ Home Results: Windows V7 Client

Here are the averaged results based on actual returned work units

(Graph courtesy of http://folding.extremeoverclocking.com/)

1060 GTX PPD History

NVidia 1060 GTX Folding PPD History

Note that in this plot, the reported results previous to the circled region are also from the 1060, but I didn’t have it running all the time.  The 305K PPD average is generated only from the work units returned within the time frame of the red circle (7/12 thru 7/21)

Production and Efficiency Plots

Nvidia 1060 PPD

NVidia GTX 1060 Folding@Home PPD Production Graph

Nvidia 1060 PPD per Watt

Nvidia GTX 1060 Folding@Home Efficiency Graph

Conclusion

For about $250 bucks (or $180 used if you get lucky on eBay), you can do some serious disease research by running Stanford University’s Folding@Home distributed computing project on the Nvidia GTX 1060 graphics card.  This card is a good middle ground in terms of price (it is the entry-level in NVidia’s current generation of GTX series of gaming cards).  Stepping up to a 1070 or 1080 will likely continue the trend of increased energy efficiency and performance, but these cards cost between $400 and $800.  The GTX 1060 reviewed here was still very impressive, and I’ll also point out that it runs my old video games at absolute max settings (Skyrim, Need for Speed Rivals).  Being a relatively small video card, it easily fits in a mid-tower ATX computer case, and only requires one supplemental PCI-Express power connector.  Doing over 300K PPD on only 185 watts, this Folding@home setup is both efficient and fast. For 2017, the NVidia 1060 is an excellent bang-for-the-buck Folding@home Graphics Card.

Request: Anyone want to loan me a 1070 or 1080 to test?  I’ll return it fully functional (I promise!)

Folding@Home on the Nvidia GeForce GTX 1050 TI: Extended Testing

Hi again.  Last week, I looked at the performance and energy efficiency of using an Nvidia GeForce GTX 1050 TI to run Stanford’s charitable distributed computing project Folding@home.  The conclusion of that study was that the GTX 1050 TI offers very good Points Per Day (PPD) and PPD/Watt energy efficiency.  Now, after some more dedicated testing, I have a few more thoughts on this card.

Average Points Per Day

In the last article, I based the production and efficiency numbers on the estimated completion time of one work unit (Core 21), which resulted in a PPD of 192,000 and an efficiency of 1377 PPD/Watt.  To get a better number, I let the card complete four work units and report the results to Stanford’s collection server.  The end result was a real-world performance of 185K PPD and 1322 PPD/Watt (power consumption is unchanged at 140 watts @ the wall).  These are still very good numbers, and I’ve updated the charts accordingly.  It should be noted that this still only represents one day of folding, and I am suspicious that this PPD is still on the high end of what this card should produce as an average.  Thus, after this article is complete, I’ll be running some more work units to try and get a better average.

Folding While Doing Other Things

Unlike the AMD Radeon HD 7970 reviewed here, the Nvidia GTX 1050 TI doesn’t like folding while you do anything else on the machine.  To use the computer, we ended up pausing folding on multiple occasions to watch videos and browse the internet.  This results in a pretty big hit in the amount of disease-fighting science you can do, and it is evident in the PPD results.

Folding on a Reduced Power Setting

Finally, we went back to uninterrupted folding on the card, but at a reduced power setting (90%, set using MSI Afterburner).  This resulted in a 7 watt reduction of power consumption as measured at the wall (133 watts vs. 140 watts).  However, in order to produce this reduction in power, the graphics card’s clock speed is reduced, resulting in more than a performance hit.  The power settings can be seen here:

GTX 1050 Throttled

MSI Afterburner is used to reduce GPU Power Limit

Observing the estimated Folding@home PPD in the Windows V7 client shows what appears to be a massive reduction in PPD compared to previous testing.  However, since production is highly dependent on the individual projects and work units, this reduction in PPD should be taken with a grain of salt.

GTX 1050 V7 Throttled Performance

In order to get some more accurate results at the reduced power limit, we let the machine chug along uninterrupted for a week.  Here is the PPD production graph courtesy of http://folding.extremeoverclocking.com/

GTX 1050 Extended Performance Testing

Nvidia GTX 1050 TI Folding@Home Extended Performance Testing

It appears here that the 90% power setting has caused a significant reduction in PPD. However, this is based on having only one day’s worth of results (4 work units) for the 100% power case, as opposed to 19 work units worth of data for the 90% power case. More testing at 100% power should provide a better comparison.

Updated Charts (pending further baseline testing)

GTX 1050 PPD Underpowered

Nvidia GTX 1050 PPD Chart

GTX 1050 Efficiency Underpowered

Nvidia GTX 1050 TI Efficiency

As expected, you can contribute the most to Stanford’s Folding@home scientific disease research with a dedicated computer.  Pausing F@H to do other tasks, even for short periods, significantly reduces performance and efficiency.  Initial results seem to indicate that reducing the power limit of the graphics card significantly hurts performance and efficiency.  However, there still isn’t enough data to provide a detailed comparison, since the initial PPD numbers I tested on the GTX 1050 were based on the results of only 4 completed work units.  Further testing should help characterize the difference.

CPU Folding Revisited: AMD FX-8320E 8-Core CPU

In the last article, I made the statement that running Stanford’s Folding@home distributed computing project on CPUs is a planet-killing waste of electricity.  Well, perhaps I didn’t say it in such harsh terms, but that was basically the point.  Graphics cards, which are massively multi-threaded by design, offer much more computational power for molecular dynamics solutions than traditional desktop processors.  More importantly, they do more science per watt of electricity consumed.

If you’ve been following along, you’ve probably noticed that the processors I’ve been playing around with are relatively elderly (if you are still using a Core2 anything, you might consider upgrading).  In this article, I’m going to take a look at a much newer processor, AMD’s Vishera-based 8-core FX-8320e.  This processor, circa 2015, is the newest piece of hardware I currently have (although as promised in the previous article, I’ve got a brand new graphics card on the way).  The 8-core FX-8320e is a bit of a departure for AMD in terms of power consumption.  While many of their high end processors are creeping north of 125 watts in TDP, this model sips a relatively modest (for an 8-core) 95 watts of power.  As shown previously here, with more cores, F@H efficiency increases along with overall performance.  The 8320e chip should be no exception.

Processor Specs:

  • Designation: AMD FX-8320e
  • Architecture: Vishera
  • Socket: AM3+
  • Manufacturing Process: 32 nm
  • # Cores: 8
  • Clock Speed: 3.2 GHz (4.0 Turbo)
  • TDP: 95 Watts

Side Note: As many will undoubtedly mention, this processor isn’t really a true 8-core in the sense that each pair of cores shares one Floating Point Unit, whereas an ideal 8-core CPU would have 1 FPU per core.  So, it will be interesting to see how this processor does against a true 1 to 1 processor such as the 1100T (six FPUs, reviewed here).

All of my power readings are at the plug, so the host system plays a part in the overall efficiency numbers reported.  Here is the configuration of my current test computer, for reference:

Test Setup Specs:

  • CPU: AMD FX-8320e
  • Mainboard : Gigabyte GA-880GMA-USB3
  • GPU: Sapphire Radeon 7970 HD
  • Ram: 16 GB DDR3L (low voltage)
  • Power Supply: Seasonic X-650 80+ Gold
  • Drives: 1x SSD, 2 x 7200 RPM HDDs, Blu-Ray Burner
  • Fans: 1x CPU, 2 x 120 mm intake, 1 x 120 mm exhaust, 1 x 80 mm exhaust
  • OS: Win7 64 bit

Folding Results

Since I’ve been out of CPU folding for a while, I had to run through 10 CPU work units in order to be eligible to start getting Stanford’s quick return bonus (extra points received for doing very fast science).  You can see the three regions on the plot.  The first region is GPU-only folding on the 7970.  The second region is CPU-only folding on the FX-8320e prior to the bonus points being awarded.  The third region is CPU-only folding with QRB bonus points.  Credit for the graph goes to http://folding.extremeoverclocking.com/.

Radeon 7970 GPU vs AMD FX 8320e CPU Folding@home Performane

An 8-core processor is no match for a graphics card with 2048 Shaders!

The 8-core AMD chip averages about 20K PPD when doing science on the older A4 core. Stanford’s latest A7 core, which supports Advanced Vector Extensions, returns about 30K PPD on the processor.  In either case, this is well short of the 150K PPD on the graphics card, which is also about three years older than the CPU!  Clearly, if your goal is doing the most science, the high-end graphics card trumps the processor.  (Update note: Intel’s latest processors such as the 6900X have been shown to return in excess of 120K PPD on the A7 core.  This makes CPUs relevant again for folding, but not as relevant as modern high-end graphics cards, which can return up to a million PPD!  I’ll have more articles on these later, I think…)

Efficiency Numbers

I used both HFM.net and the local V7 client to obtain an estimated PPD for the A7 core work unit, which should represent about the highest PPD achievable on the FX-8320e in stock trim.

FX 8320e PPD Performance

According to the watt meter, my system is drawing about 160 watts from the wall.  So, 29534 PPD / 160 watts is 185 PPD/Watt.  Here’s how this stacks up with the hardware tested so far.

Folding@Home Performance Table with AMD 8320e

Conclusion

Even though the Radeon HD 7970 was released 3 years earlier than AMD’s flagship line of 8-core processors, it still trounces the CPU in terms of Folding@home performance. Efficiency plots show the same story.  If you are interested in turning electricity into disease research, you’d be better off using a high-end graphics card than a high-end processor.  I hope to be able to illustrate this with higher end, modern hardware in the future.

As a side note, the FX-8320e is the most efficient folder of the processors tested so far. Although not half as fast as the latest Intel offerings, it has performed well for me as a general multi-tasking processor.  Now, if only I could get my hands on a new CPU, such as a Kaby Lake or a Ryzen (any one want to donate one to the cause?)…