Folding on the Nvidia GTX 1070

Overview

Folding@home is Stanford University’s charitable distributed computing project. It’s charitable because you can donate electricity, as converted into work through your home computer, to fight cancer, Alzheimer’s, and a host of other diseases.  It’s distributed, because anyone can run it with almost any desktop PC hardware.  But, not all hardware configurations are created equally.  If you’ve been following along, you know the point of this blog is to do the most work for as little power consumption as possible.  After all, electricity isn’t free, and killing the planet to cure cancer isn’t a very good trade-off.

Today we’re testing out Folding@home on an EVGA NVIDIA GTX 1070 graphics card.  This card offers a big step up in gaming and compute horsepower compared to the 1060 I reviewed previously, and is capable of pushing solid frame rates at 4K resolution. So, how well does it fold?

Card Specifications (Nvidia Reference Specs)

1070 specs

Nvidia GTX 1070 Specifications

evga 1070 acx stock photo

EVGA Nvidia GTX 1070 ACX 3.0 (photo credit: EVGA)

FOLDING@HOME TEST SETUP

For this test I used my normal desktop computer as the benchmark machine.  Testing was done using Stanford’s V7 client on Windows 10 64-bit running FAH Core 21 work units.  The video driver version used was initially 388.59, and subsequently 372.90. Power consumption measurements reported in the charts were taken at the wall and are thus full system power consumption numbers.

If you’re interested in reading about the hardware configuration of my test rig, it is summarized in this post:

https://greenfoldingathome.com/2017/04/21/cpu-folding-revisited-amd-fx-8320e-8-core-cpu/

Information on my watt meter readings can be found here:

I Got a New Watt Meter!

Initial Testing and Troubleshooting

Like the GTX 1060, the 1070 uses Nvidia’s Pascal architecture, which is very efficient and has a reputation for solid compute performance. The 1070 has 50% more CUDA cores than the 1060, and with Folding@Home’s exponential points system (the quick return bonus gives you more points for doing work quickly), we should see roughly double the PPD of the 1060, which does 300 – 350 thousand PPD depending on the work unit. Based on various people’s experiences, and especially this forum post, I was expecting the 1070 to produce somewhere in the range of 600-700K PPD.

That wasn’t what happened. The card wasn’t exactly slow, but initial testing showed an estimated 450 to 550K PPD, as reported by the client. I ran it for a few days, since PPD can vary a good deal depending on the work unit, but the result was unfortunately the same. 550K PPD was about as much as my card would do.

initial_1070_results

Initial GTX 1070 Results – 544K PPD

At first I thought it might be due to the card running hot. Unlike my test of a brand new 1060, I obtained my 1070 used off of eBay for a great price of $200 dollars + shipping. It was a little dusty, so I blew it all out and fired up MSI Afterburner to check out the temps. Unfortunately, the fans on the card weren’t even breaking a sweat, and it was nice and cool. Points didn’t increase.

evga 1070 acx 3.0

My Used EVGA GTX 1070 ACX 3.0 – eBay Price: $200

initial 1070 afterburner report

MSI Afterburner Report: NVidia GTX 1070, Stock Clocks, Driver 388.59

After doing some more digging, I ran across a few threads online that indicated the 1070 (along with a few other GTX models) don’t always boost up to their maximum clock rates for compute loads. Opening up a video, or Folding@home’s protein viewer, can sometimes force the card to clock up. I tried this and didn’t have any luck. My card was running at the stock clocks, and in fact the memory even appeared to be running 200 Megahertz below the 4000 Mhz reference clock rate. This suggested the card was in a low-power mode.

Thankfully, Nvidia’s System Management Interface tool can be used to see what is going on. This tool, which in Windows 10 lives in C:\Program Files\Nvidia Corporation, can be accessed by the command line. I followed the tutorial here to learn a few things about what my 1070 was doing. Although that write-up is geared at people mining for cryptocurrency, the steps are still releveant.

As can be seen here, my card was in the “P2” state, which is not the high-performance “P0” state. This is why the card wasn’t boosting, and why the memory clock seems diminished.

1070 performance state

Nvidia 1070 Performance State

Another feature of the Nvidia System Management Interface is the ability to get the power consumption at the card. This is measured by the driver, using the card’s hardware, and is the total instantaneous power the card is consuming (PCI slot power + supplemental power connections). As you can see, in the P2 state, the card is very rarely nearing the 150 watt TDP.

Now, this doesn’t necessarily mean the card would get closer to 150 watts in the P0 state. F@H does not utilize every portion of the graphics card, and it is expected that the power consumption would not be right at the limit. Still, these numbers seemed a bit low to me.

1070 card-level power consumption (before tuning)

1070 card-level power consumption (before tuning)

Overclocking Manually to Approximate P0 State

Unlike what was suggested in that crypto mining article, I wasn’t able to use the NVSMI tool to force a P0 state. For some reason, my NVSMI tool wouldn’t show me the available clock rate settings for my 1070. However, manual overclocking with a program such as MSI Afterburner is really easy. By maxing out the power limit and setting the core clock to a higher value, I can basically make the card run at its boost frequency, or higher.

First, I set the power limit to the maximum allowed (112%). Don’t worry, this won’t hurt anything. It is limited in the driver to not cause any damage. Basically, this will allow the card to sip a bit more electricity (albeit at a reduction of efficiency). For a card that was in the P0 state (say, running a video game), this would allow higher boost clocks.

Next, I started upping the core clock in increments of 100 Mhz. I didn’t run into any stability problems, and settled in on a core clock of 2000 Mhz (factory clock is 1506 Mhz / 1683 boost). Note that that factory boost number is deceiving, since the latest drivers will crank the GPU core up past 1900 MHz if there is power and voltage headroom. From what I read, many people can run the 1070 stable at 2050 Mhz without adding voltage.

I decided not to boost the voltage, and to stay 50 Mhz below that supposedly stable number, because it’s not worth risking the stability of Folding@home. We want accurate, repeatable science! Plus, dropping work units is much worse for PPD than running slightly below a card’s maximum capability.

I experimented with clocking the memory up from 3800 MHz to 4000 MHz (note it’s double data rate so this equates to 8000 MHz as reported by some programs). This didn’t seem to affect results. F@H has historically been fairly insensitive to memory clocks, and boosting memory too much can cause slowdowns due to the error-checking routines having to work harder to ensure clean results. Basically, everyone says it’s not worth it. I ran it at 4000 MHz long enough to confirm this (a day), then throttled it back down to 3800 MHz. The benefit here will be more power available for the GPU cores, which is what really counts for folding.

Here are my final overclock numbers. The card has been running with these clocks for a week and a half non-stop, with no stability issues:

final 1070 afterburner report

Overclocked Settings: +160 MHz Core, 112% Power Limit

Note the driver version as shown in the updated Afterburner screen shot is different…as it turns out, this can have a huge effect on F@H PPD. More on that in a moment.

Overclocking Result: An Extra 50,000 PPD

Running the core at 2012 MHz (+160 MHz boost from the P2 power state) and upping the card’s power limit by 12% made the average PPD, as observed over two days, climb from 500-550K PPD to 550K-600K PPD. So, that’s a 50,000 PPD increase for minimal effort. But, something still seemed off. At the time I was still running driver version 388.59, and one of the things I had discovered when searching around for 1070 tuning tips is that not all drivers are created equal.

Nvidia Driver 372.90: The Best Folding Driver for the GTX 1070

Nvidia has been updating drivers with more and more emphasis on gaming optimizations and less on compute. So, it makes sense that older drivers might actually offer better compute performance. There are many threads in the Folding@Home Hardware Forum discussing this, and one driver version that keeps being mentioned is 372.90. It’s a bit tricky to keep it installed on Windows 10, since Windows is always trying to push a newer version, but for my 24/7 folding rig, I installed it and simply never rebooted it in order to get a week’s worth of data.

This driver change alone seemed to also offer a 50,000 point boost. After running various core 21 work units, the GTX 1070’s PPD has stayed between 630,000 and 660,000. This is normal variation between work units, and I feel confident reporting a final PPD of 640K. As I write this, the client is estimating 660K PPD.

final_1070_results

Nvidia GTX 1070: 660K PPD on Project 13815 (Core 21)

This is an excellent result. It’s twice the PPD of the GTX 1060, although eking out that last 100K PPD took a manual overclock plus a driver “update” to an older version.

Now, for the fun part. Efficiency! This 1070 is rated at 150 watts, which is only 30 watts more than the 1060. So we are supposedly doing 100% more science for Stanford University, and for a meager 25% increase in power consumption. Time to bust out the watt meter and find out!

Power Consumption at the Wall

Using my P3 Kill-A-Watt Power Meter, I measured the total system power consumption. This is the same way I measure all of my graphics cards (as opposed to estimating the card’s power by the TDP or using the video card driver to spit out instantaneous card power). The reason is that I like to have a full-system view, factoring in the power usage of my CPU, main board, and RAM, all essential components to keep the card happy.

While folding with the GTX 1070, my system’s total power draw varied between 225 and 230 watts. I’m going to go with 227 watts as the average power number. 

Efficiency

Computing computational efficiency as Points Per Day (PPD) / Power (Watts) gives:

640,000 PPD / 227 Watts = 2820 PPD/Watt.

Conclusion

The Nvidia GTX 1070 is a very efficient card for running Stanford’s Folding@Home Distributed Computing Project. The trend established in my previous articles seems to be continuing, namely that the more expensive high-end video cards are more efficient, despite their higher power draw. In this case of the 1070, some manual overclocking was needed to unlock the full PPD potential. As proven by many others, the default drivers weren’t very good, but the 372.90 drivers really opened it up.

Base PPD: 550,000

Tuned PPD (drivers + overclock) = 640,000

PPD/Watt(@wall) = 2820

1070 ppd plot

Nvidia GTX 1070 Performance Comparison

1070 efficiency plot

Nvidia 1070 Efficiency Comparison

As a final note, this post focused more on PPD than efficiency, since for much of the testing my watt meter was not installed (my kids keep playing with it). At some point in the future, I’ll do an article where I tune one of these cards to find the best efficiency point. This will likely be at a lower power limit than 100%, with perhaps a slight reduction in clock rate.

Advertisements

Update: Where I’ve Been

It’s been a few months (well more than a few), so I figured I should explain why there haven’t been so many articles lately. I’ve always liked writing, be it technical blogs like this one, writing for work, or writing fiction. Back in 2005, I started writing science-fiction for fun, and last year I succeeded in completing my first novel. I’ve still been blogging, although I’ve been writing about that novel-writing project instead of distributed computing. If you’re interested in learning about the realms of self-published science fiction, then please do check out my blog at starfightersf.com.

Another reason for not writing folding@home articles is because I haven’t been folding! Even with solar panels, the amount of electricity we use in our home is astonishing, and adding a F@H energy burden to that didn’t make sense, especially not in the warmer months when it increases the load on the air-conditioning (talk about an environmental double-whammy!).

Instead, I decided to wait until it is nice and cold (like right now), so that I can turn down the oil heat in my basement and crank up the folding rig. This way, the electricity serves two purposes: first, charitable disease research for Stanford, and second, heating my basement and saving oil.

In terms of being energy efficient, this is the best way to go!

So, consider this the official restart of Green F@H for the new year. I’ll be kicking things off with the 1070 I just picked up from eBay for a surprisingly palatable $200. As you might have noticed, I don’t tend to review the latest cards, and that’s simply because of the price tag. Buying last-generation’s cast-off cards used has turned out to be an immense money saver, so if earning PPD/dollar is also on your list of priorities, I highly recommend this method.

Stay tuned for the Nvidia GTX 1070 review!

 

 

Is Folding@Home a Waste of Electricity?

Folding@home has brought together thousands of people (81 thousand active folders as of the time of this writing, as evidenced from Stanford’s One in a Million contributor drive.) This is awesome…tens of thousands of people teaming up to help researchers unravel the mysteries of terrible diseases.

But, there is a cost. If you are reading this blog, then you know the cost of scientific computing projects such as Folding@Home is environmental. In trying to save ourselves from the likes of cancer and Alzheimer’s disease, we are running a piece of software that causes our computers to use more electricity. In the case of dedicated folding@home computers, this can be hundreds of watts of power consumed 24/7. It adds up to a lot of consumed power, that in the end exits your computer as heat (potentially driving up your air conditioning costs as well).

Folding on Graphics Card Thermal

FLIR Thermal Cam – Folding@Home on Graphics Card

If Stanford reaches their goal of 1 million active folders, then we have an order of magnitude more power consumption on our hands. Let’s do some quick math, assuming each folder contributes 200 watts continuous (low compared to the power draw of most dedicated Folding@home machines). In this case, we have 200 watts/computer * 24 hours/day * 365 days/year * 1,000,000 computers *1 kilowatt-hour/1000 watt-hours = 1,752,000,000 kilowatt-hours of power consumed in a year, in the name of Science!

That’s almost two billion kilowatt-hours, people.  It’s 1.75 terawatt-hours (TWh)! Using the EPA’s free converter can put that into perspective. Basically, this is like driving 279 thousand extra cars for a year, or burning 1.5 billion pounds of coal.  Yikes!

https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

F@H Energy Equivalence

Potential Folding@Home Environmental Impact

Is all this disease research really harming the planet? If it is, is it worth it? I don’t know. It depends on the outcome of the research, the potential benefit to humans, and the detriment to humans, animals, and the environment caused by that research. This opens up all sorts of what-if scenarios.

For example: what if Folding@Home does help find a future cure for many diseases, which results in extended life-spans. Then, the earth gets even more overpopulated than it is already. Wouldn’t the added environmental stresses negatively impact people’s health? Conversely, what if Folding@Home research results in a cure for a disease that allows a little girl or boy to grow to adulthood and become the inventor of some game-changing green technology?

It’s just not that easy to quantify.

Then, there is the topic of Folding@home vs. other distributed computing projects. Digital currency, for example. Bitcoin miners (and all the spinoffs) suck up a ton of power. Current estimates put Bitcoin alone at over 40 TWH a year.

Source: https://www.theguardian.com/technology/2018/jan/17/bitcoin-electricity-usage-huge-climate-cryptocurrency

That’s more power than some countries use, and twenty times more than my admittedly crude future Folding@home estimate. When you consider that the cryptocurrency product has only limited uses (many of which are on the darkweb for shady purposes), it perhaps helps cast Folding@home in a better light.

There is always room for improvement thought. That is the point of this entire blog. If we crazies are committed to turning our hard-earned dollars into “points”, we might as well do it in the most efficient way possible. And, while we’re at it, we should consider the environmental cost of our hobby and think of ways to offset it (that goes for the Bitcoin folks too).

I once ran across a rant on another online blog about how Folding@home is killing the planet. This was years ago, before the Rise of the Crypto. I wish I could find that now, but it seems to have been lost in the mists of time, long since indexed, ousted, and forgotten by the Google Search Crawler. In it, the author bemoaned over how F@H was murdering mother earth in the name of science. I recall thinking to myself, “hey, they’ve got a point”. And then I realized that I had already done a bunch of things to help combat the rising electric bill, and I bet most distributed computing participants have done some of these things too.

These things are covered elsewhere in this blog, and range from optimizing the computer doing the work to going after other non-folding@home related items to help offset the electrical and environmental cost. I started by switching to LED light-bulbs, then went to using space heaters instead of whole house heating methods in the winter. As I upgraded my Folding@home computer, I made it more energy efficient not just for F@H but for all tasks executed on that machine.

In the last two years, my wife and I bought a house, which gave us a whole other level of control over the situation. We had one of those state-subsidized energy audits done. They put in some insulation and air-sealed our attic, thus reducing our yearly heating costs. Eventually, we even decided to put solar panels on the roof and get an electric car (these last two weren’t because I felt guilty about running F@H, but because my wife and I are just into green technologies). We even use our Folding@home computer as a space heater in the winter, thus offsetting home heating oil use and negating any any environmental arguments against F@H in the winter months.

In conclusion, there is no doubt that distributed projects have an environmental cost. However, to claim that they are a waste of electricity or that they are killing the planet might be taking it too far. One has to ask if the cause is worth the environmental impact, and then figure out ways to lessen that impact (or in some cases get motivated to offset it completely. Solar powered folding farm, anyone?)

Solar Panel in Basement

LG 320 Solar Panel in my basement, awaiting roof install.

Folding on the NVidia GTX 1060

Overview

Folding@home is Stanford University’s charitable distributed computing project. It’s charitable because you can donate electricity, as converted into work through your home computer, to fight cancer, Alzheimer, and a host of other diseases.  It’s distributed, because anyone can run it with almost any desktop PC hardware.  But, not all hardware configurations are created equally.  If you’ve been following along, you know the point of this blog is to do the most work for as little power consumption as possible.  After all, electricity isn’t free, and killing the planet to cure cancer isn’t a very good trade-off.

Today we’re testing out Folding@home on EVGA’s single-fan version of the NVIDIA GTX 1060 graphics card.  This is an impressive little card in that it offers a lot of gaming performance in a small package.  This is a very popular graphics card for gamers who don’t want to spend $400+ on GTX 1070s and 1080s.  But, how well does it fold?

Card Specifications

Manufacturer:  EVGA
Model #:  06G-P4-6163
Model Name: EVGA GeForce GTX 1060 SC GAMING (Single Fan)
Max TDP: 120 Watts
Power:  1 x PCI Express 6-pin
GPU: 1280 CUDA Cores @ 1607 MHz (Boost Clock of 1835 MHz)
Memory: 6 GB GDDR5
Bus: PCI-Express X16 3.0
MSRP: $269

06G-P4-6163-KR_XL_4

EVGA Nvidia GeForce GTX 1060 (photo by EVGA)

Folding@Home Test Setup

For this test I used my normal desktop computer as the benchmark machine.  Testing was done using Stanford’s V7 client on Windows 7 64-bit running FAH Core 21 work units.  The video driver version used was 381.65.  All power consumption measurements were taken at the wall and are thus full system power consumption numbers.

If you’re interested in reading about the hardware configuration of my test rig, it is summarized in this post:

https://greenfoldingathome.com/2017/04/21/cpu-folding-revisited-amd-fx-8320e-8-core-cpu/

Information on my watt meter readings can be found here:

I Got a New Watt Meter!

FOLDING@HOME TEST RESULTS – 305K PPD AND 1650 PPD/WATT

The Nvidia GTX 1060 delivers the best Folding@Home performance and efficiency of all the hardware I’ve tested so far.  As seen in the screen shot below, the native F@H client has shown up to 330K PPD.  I ran the card for over a week and averaged the results as reported to Stanford to come up with the nominal 305K Points Per Day number.  I’m going to use 305 K PPD in the charts in order to be conservative.  The power draw at the wall was 185 watts, which is very reasonable, especially considering this graphics card is in an 8-core gaming rig with 16 GB of ram.  This results in a F@H efficiency of about 1650 PPD/Watt, which is very good.

Screen Shot from F@H V7 Client showing Estimated Points per Day:

1060 TI Client

Nvidia GTX 1060 Folding @ Home Results: Windows V7 Client

Here are the averaged results based on actual returned work units

(Graph courtesy of http://folding.extremeoverclocking.com/)

1060 GTX PPD History

NVidia 1060 GTX Folding PPD History

Note that in this plot, the reported results previous to the circled region are also from the 1060, but I didn’t have it running all the time.  The 305K PPD average is generated only from the work units returned within the time frame of the red circle (7/12 thru 7/21)

Production and Efficiency Plots

Nvidia 1060 PPD

NVidia GTX 1060 Folding@Home PPD Production Graph

Nvidia 1060 PPD per Watt

Nvidia GTX 1060 Folding@Home Efficiency Graph

Conclusion

For about $250 bucks (or $180 used if you get lucky on eBay), you can do some serious disease research by running Stanford University’s Folding@Home distributed computing project on the Nvidia GTX 1060 graphics card.  This card is a good middle ground in terms of price (it is the entry-level in NVidia’s current generation of GTX series of gaming cards).  Stepping up to a 1070 or 1080 will likely continue the trend of increased energy efficiency and performance, but these cards cost between $400 and $800.  The GTX 1060 reviewed here was still very impressive, and I’ll also point out that it runs my old video games at absolute max settings (Skyrim, Need for Speed Rivals).  Being a relatively small video card, it easily fits in a mid-tower ATX computer case, and only requires one supplemental PCI-Express power connector.  Doing over 300K PPD on only 185 watts, this Folding@home setup is both efficient and fast. For 2017, the NVidia 1060 is an excellent bang-for-the-buck Folding@home Graphics Card.

Request: Anyone want to loan me a 1070 or 1080 to test?  I’ll return it fully functional (I promise!)

Folding@Home on the Nvidia GeForce GTX 1050 TI: Extended Testing

Hi again.  Last week, I looked at the performance and energy efficiency of using an Nvidia GeForce GTX 1050 TI to run Stanford’s charitable distributed computing project Folding@home.  The conclusion of that study was that the GTX 1050 TI offers very good Points Per Day (PPD) and PPD/Watt energy efficiency.  Now, after some more dedicated testing, I have a few more thoughts on this card.

Average Points Per Day

In the last article, I based the production and efficiency numbers on the estimated completion time of one work unit (Core 21), which resulted in a PPD of 192,000 and an efficiency of 1377 PPD/Watt.  To get a better number, I let the card complete four work units and report the results to Stanford’s collection server.  The end result was a real-world performance of 185K PPD and 1322 PPD/Watt (power consumption is unchanged at 140 watts @ the wall).  These are still very good numbers, and I’ve updated the charts accordingly.  It should be noted that this still only represents one day of folding, and I am suspicious that this PPD is still on the high end of what this card should produce as an average.  Thus, after this article is complete, I’ll be running some more work units to try and get a better average.

Folding While Doing Other Things

Unlike the AMD Radeon HD 7970 reviewed here, the Nvidia GTX 1050 TI doesn’t like folding while you do anything else on the machine.  To use the computer, we ended up pausing folding on multiple occasions to watch videos and browse the internet.  This results in a pretty big hit in the amount of disease-fighting science you can do, and it is evident in the PPD results.

Folding on a Reduced Power Setting

Finally, we went back to uninterrupted folding on the card, but at a reduced power setting (90%, set using MSI Afterburner).  This resulted in a 7 watt reduction of power consumption as measured at the wall (133 watts vs. 140 watts).  However, in order to produce this reduction in power, the graphics card’s clock speed is reduced, resulting in more than a performance hit.  The power settings can be seen here:

GTX 1050 Throttled

MSI Afterburner is used to reduce GPU Power Limit

Observing the estimated Folding@home PPD in the Windows V7 client shows what appears to be a massive reduction in PPD compared to previous testing.  However, since production is highly dependent on the individual projects and work units, this reduction in PPD should be taken with a grain of salt.

GTX 1050 V7 Throttled Performance

In order to get some more accurate results at the reduced power limit, we let the machine chug along uninterrupted for a week.  Here is the PPD production graph courtesy of http://folding.extremeoverclocking.com/

GTX 1050 Extended Performance Testing

Nvidia GTX 1050 TI Folding@Home Extended Performance Testing

It appears here that the 90% power setting has caused a significant reduction in PPD. However, this is based on having only one day’s worth of results (4 work units) for the 100% power case, as opposed to 19 work units worth of data for the 90% power case. More testing at 100% power should provide a better comparison.

Updated Charts (pending further baseline testing)

GTX 1050 PPD Underpowered

Nvidia GTX 1050 PPD Chart

GTX 1050 Efficiency Underpowered

Nvidia GTX 1050 TI Efficiency

As expected, you can contribute the most to Stanford’s Folding@home scientific disease research with a dedicated computer.  Pausing F@H to do other tasks, even for short periods, significantly reduces performance and efficiency.  Initial results seem to indicate that reducing the power limit of the graphics card significantly hurts performance and efficiency.  However, there still isn’t enough data to provide a detailed comparison, since the initial PPD numbers I tested on the GTX 1050 were based on the results of only 4 completed work units.  Further testing should help characterize the difference.

Folding@Home Performance on a Budget: Nvidia GeForce GTX 1050 TI

With the release of Nvidia’s new Pascal architecture, the world of computational computing has become a lot more interesting.  Based on a 14 nm process, the GTX 10XX series of graphics cards have set records for power efficiency.  Today, we’ll be looking at the Geforce GTX 1050 TI in terms of Folding@home performance and efficiency.

Nvidia GTX 1050 TI Overview

The GTX 1050 TI is the second from the lowest-end Pascal card (there is a non-TI version with slightly fewer active cores).  One of the most attractive features about this card is its relatively low price ($130 for the EVGA SC version being reviewed here today).  In addition, this card does not require any external power connections, being supplied by the PCI Express slot power alone (about 70 watts).  Online review websites have raved about this card’s impressive gaming potential, small size, and overall efficiency.

Specs (EVGA 1050 TI SC):

Performance

  • NVIDIA GTX 1050 Ti
  • 768 Pixel Pipelines
  • 1354 MHz Base Clock
  • 1468 MHz Boost Clock
  • 65GT/s Texture Fill Rate

Memory

  • 4096 MB, 128 bit GDDR5
  • 7008 MHz (effective)
  • 112.16 GB/s Memory Bandwidth

Interface

  • PCI-E 3.0 16x
  • DVI-D, DisplayPort, HDMI
  • Total Power Draw : 75 Watts

Folding@Home Test Setup

For this test, I swapped out the Radeon 7970 in my gaming computer for the GTX 1050 TI. The first thing I noticed was the incredible size difference between these two cards.  Of course it’s a bit of an apples to oranges comparison…the 7970 is an old top of the line graphics card, whereas the 1050 is a lightweight, entry-level gaming card.

Size Comparison (is bigger always better?  We’ll find out):

Graphics Card Showdown: EVGA Nvidia Geforce GTX 1050 TI vs. Gigabyte AMD Radeon HD 7970 GHz Edition

Graphics Card Showdown: EVGA Nvidia Geforce GTX 1050 TI vs. Gigabyte AMD Radeon HD 7970 GHz Edition

Testing was done using Stanford’s V7 client on Windows 7 64-bit running FAH Core 21 work units.  The video driver version used was 381.65.  All power consumption measurements were taken at the wall and are thus full system power consumption numbers.

If you’re interested in reading about the hardware configuration of my test rig, it is summarized in this post:

https://greenfoldingathome.com/2017/04/21/cpu-folding-revisited-amd-fx-8320e-8-core-cpu/

Information on my watt meter readings can be found here:

I Got a New Watt Meter!

Folding@Home Test Results – 192K PPD and 1400 PPD/Watt!

One of the recurring themes of this blog is that using new, basic hardware to run Folding@home often leads to much better performance and energy efficiency than running on dated high-end hardware.  The results here sum that up nicely.  As you can see, the Nvidia GTX 1050 TI is a computational powerhouse in a tiny package.  It dominates in terms of raw F@H PPD as well as PPD/Watt efficiency.  It is also worth mentioning that the total system power draw of only 140 watts is very impressive.

Screen Shot from F@H V7 Client showing Estimated Points per Day:

Nvidia GTX 1050 TI Folding@Home Performance

192K PPD Reported for 1050 TI!

Points Per Day (PPD) Performance and PPD/Watt Efficiency:

Nvidia GTX 1050 TI Folding@Home PPD Chart

The Nvidia GTX 1050 TI produces about 190K Points Per Day and is faster than all hardware tested so far, including the AMD Radeon 7970

Nvidia GTX 1050 TI Folding@Home Efficiency Chart

The Nvidia Geforce GTX 1050 TI is a very efficient graphics card, resulting in the highest PPD/Watt of all hardware tested so far.

Detailed Table:

Nvidia GTX 1050 TI Folding@Home Stats Table

Real-World Performance Note

One thing I noticed when running on the GTX 1050 was the sensitivity to running other graphics operations and / or CPU folding.  After posting four work-units with an average PPD of over 185K PPD, my wife and I started using the computer for other tasks while leaving folding running.  We noticed significant lag with anything graphical, from scrolling through web pages to streaming video.  In addition, re-enabling 8-core CPU folding seemed to hurt PPD more than it helped (no formal testing numbers to document this at this time, sorry!).

The performance hit of not having a dedicated F@H computer is evident in the following PPD chart, where the high data point is the result of dedicated folding on the graphics card for a day, and the subsequent data points are the result of trying to do other things on the computer as well.  Eventually, we decided to pause F@H to get any respectable streaming quality out of our evening shows.  This wasn’t noticed when folding on the AMD Radeon 7970.  It probably is a consequence of every last bit of the GTX 1050’s compute horsepower being prioritized for F@H, which is one of the reasons why this card does so well when left to fold to its heart’s content.  It looks like an article on building a low-cost dedicated folding box is in order!

Nvidia GTX 1050 TI Folding@Home Extended Testing PPD

Dedicated F@H Performance vs. Multi-Tasking

Conclusion

The Nvidia Geforce GTX 1050 TI excels at Folding@home.  Thanks to its low power consumption (75 watts) and advanced architecture, this card can produce up to 190K PPD in a desktop consuming a mere 140 watts of power from the wall.  This results in a F@H efficiency of nearly 1400 PPD/watt, which is twice that of the AMD Radeon 7970 that was the previous workhorse in my desktop.  Undoubtedly the higher-end GTX 10XX series graphics cards such as the 1070 offer even more performance, albeit at higher power consumption and much higher entry price than the $130 for the GTX 1050. For this price, you can’t go wrong if your goal is to do the most science for the least amount of power consumed while sticking to a tight budget.

Squeezing a few more PPD out of the FX-8320E

In the last post, the 8-core AMD FX-8320E was compared against the AMD Radeon 7970 in terms of both raw Folding@home computational performance and efficiency.  It lost, although it is the best processor I’ve tested so far.  It also turns out it is a very stable processor for overclocking.

Typical CPU overclocking focuses on raw performance only, and involves upping the clock frequency of the chip as well as the supplied voltage.  When tuning for efficiency, doing more work for the same (or less) power is what is desired.  In that frame of mind, I increased the clock rate of my FX-8320e without adjusting the voltage to try and find an improved efficiency point.

Overclocking Results

My FX-8320E proved to be very stable at stock voltage at frequencies up to 3.6 GHz.  By very stable, I mean running Folding@home at max load on all CPUs for over 24 hours with no crashes, while also using the computer for daily tasks.   This is a 400 MHz increase over the stock clock rate of 3.2 GHz.  As expected, F@H production went up a noticeable amount (over 3000 PPD).  Power consumption also increased slightly.  It turns out the efficiency was also slightly higher (190 PPD/watt vs. 185 PPD/watt).  So, overclocking was a success on all fronts.

FX 8320e overclock PPD

FX 8320e overclock efficiency

Folding Stats Table FX-8320e OC

Conclusion

As demonstrated with the AMD FX-8320e, mild overclocking can be a good way to earn more Points Per Day at a similar or greater efficiency than the stock clock rate.  Small tweaks like this to Folding@home systems, if applied everywhere, could result in more disease research being done more efficiently.